

Influences of drying methods processing on nutritional properties of three fish species *Govazym stranded tail*, *Hamoor* and *Zeminkan*

Aberoumand, A. and M. Karimi reza abad

Department of Fisheries, Behbahan Katam Alanbia University of Technology, Behbahan, Iran

Article history	Abstract
Received: 28 November 2014 Received in revised form: 1 May 2015 Accepted: 7 May 2015	The process selection for fish drying by fish processer depend on the fish species and consumer demand. Three fish species such as <i>Govazym stranded tail, Hamoor</i> and <i>Zeminkan</i> were purchased from market fish Behbahan. <i>Govazim stranded tail, Hamoor</i> and <i>Zeminkan</i> hold in 70°C oven for 24 h until completely dried. Fish drying carried out in the sun by placing it on
Keywords Govazym Hamoor Zeminkan Solar and oven methods Nutrient compounds	a tray with a traditional outdoor sunlight at temperatures up to 37°C for 3 days. International standard AOAC methods were used for nutrients analysis of dried fish samples, Protein content of <i>Hamoor</i> in the oven method (%85.66 \pm 0.26) was higher than in others. The highest fat content (%5.56+0.04) in the sun method found for <i>Hamoor</i> and the lowest content (%3.22+0.12) is also in solar dry found for <i>Govazym</i> . The results showed that sun method creates a relative stability of the compounds. The oven drying method had a good effect on decreasing drying time. It is recommended that the fish drying with electric oven method is more suitable for feeding health nutrition and good shelf life.

Introduction

The processes, which usually reduce moisture content, involve drying in solar and oven, smoking and frying. Although the method of drying depends on the species used and the interest of consumers, but in many countries, fish is cooked before drying. The drying process effects on protein quality and composition of fish which is in the open space. This method is a cheap and inexpensive method, however, the oven drying method is faster than the sunshine. The oven method is safer than the sun method. Smaller fish species were exposed to air velocity and relative humidity of the surrounding environment suitable equipment for 30 minutes to several months for drying. Different drying methods (sun and oven) have different effects on nutrient composition of fish. The quality of dried fish in different ways is different. However, the methods selected by a process of drying fish depend on fish species and consumer demand. Fresh fish was exposed in sunshine, often in tropical dry areas where moisture is low and the heat energy from the sun is extremely impressive, causes the during of loss of water from the fish before spoilage is reduced. In some countries, traditional sun drying of fish by placing it on a dish can be done in an open environment. Fish drying in the sun may be cheap but its problems have been reported in the literature. Limitations of this approach are significant losses in product, lower quality fish because of contamination by foreign materials, insects and microorganisms,

*Corresponding author. Email: *aberoumandali@yahoo.com* as well as discoloration by UV light. Effects of two drying methods such as smoking and electric oven on the approximate composition of catfish and tilapia have been studied. Electric oven for healthy eating recommended and this method is more suitable for long-term storage of dried fish (Clucas and Sutcliffe, 1981; Basha and Pancholy, 1982; Fennema, 1996; Eyo, 1998; Andrew, 2001; Bala and Mondol, 2001; Eyo, 2001; Adeparusi et al. 2003; Azam et al., 2004; Gokoglu et al.2004; Dahl et al. 2006; Akinneye et al. 2007; Edijala et al., 2009). The results of research work Azam et al. (2004) showed that the amounts of protein, fat and ash of ten fish species were different according to drying methods and varieties. The minimum amount of fat obtained from three species of fish dried in the sun, could related to fat oxidation during periods when the fish is dried (Akinneye et al. 2007). Aim of this study was analysis of nutrients, nutritional values and percentage of energy of three fish species Govazym stranded tail, Hamoor and Zeminkan were affected electric oven and solar drying methods.

Materials and Methods

Materials and preparation of sample

The fish species used in this study were *Govazym* stranded tail, Hamoor and Zeminkan in southern Iran. These fishes were chosen because of readily available, cheap and affordable. The fish species were purchased from Behbahan fishes market in southern

Samples	standard length		Total length	Weight (g)
Local names	(cm)	(cm)	(cm)	
Govazym standard te	ail 28	32.33	32.33	410.1
Hamoor	32.16	34.83	38.33	426.63
Zeminkan	19	28	23	172.7

Table 1. Mean of length (cm) and weight (g) three fresh fish species

Iran. The fishes *Govazym stranded tail, Hamoor* and *Zeminkan* were thoroughly washed, cut into about 175, 214 and 261.5 g pieces respectively and washed again with tap and distilled water. The processed fish samples were analyzed for determination of fat, ash, moisture and protein contents by (AOAC, 2005).

Processing and analytical methods

The fish species Govazym stranded tail, Hamoor and Zeminkan respectively were placed in an oven at 70°C for 24 h to obtain sample constant weight and to dry completely, also Govazym stranded tail, Hamoor and Zeminkan fillets respectively were put in separate trays and placed in the sun for 3 days, in low humidity, the sample to dry completely, then all samples in mixer were powdered. In this study we were analyzed the different nutritional components in processed samples. Moisture, ash, protein and lipid contents were determined in each samples according to (AOAC, 2005). Briefly, the moisture content was obtained by drying the sample overnight at 105°C, ash was quantified after combustion for 16 h at 550 °C, crude protein content was determined by the Kjeldahl method using a conversion factor of 6.25 (AOAC, 2005) and total lipid was determined with the Soxhlet extraction method using ethyl ether (AOAC, 2005). The energy values were expressed as kcal/100 g, was estimated using factors: 9.02 and 4.27 kcal/g for fat and protein, respectively (FAO, 2003).

Statistical analyses

The data were presented in duplicate and results were representative of the mean \pm standard deviations. All results were submitted to the analysis of variance (ANOVA) at p< 0.05.

Results and Discussion

Nutrients amounts of three fish species for solar and oven drying methods were presented in Table 2. Fish as a protein good source is generally is considered, which is widely accepted in developing countries. There are unsuitable maintenance techniques which make problems for access to its protein. Drying process is a treatment for maintenance of fish and another animal proteins, because its quality is preserved for long time period and little changes and lost minimum in production. There are noticeable changes in color, odor, taste and texture of the fish species discussed in all drying methods oven and sun. Generally, in the oven drying method, moisture content of fish, faster and more evenly than the sun, are taken. The total amount of body water of fish species, depend on morphological and chemical differences, physical properties and the fish storing. In dried fish with moisture level of 6 to 8% from the microbial spoilage is prevented. If we the dried fish put in place to absorb moisture, water activity increase in during storage to %75 or more and bacteria and mold result to them spoilage. A significant increase in the amount of protein in the dried fishes indicates that fish protein nitrogen in drying period is not going to lose (p < 0.05), this is same to obtained results by Gokoglu et al. (2004) and Tao and Linchun, (2008). Increase in protein content in during drying is due to dehydration in during heating is obtained which to increase the nutritional value of fish. Similarly, the method of drying in the sun, overheating and evaporation increases the fat content of the fish (Norimah et al., 2008). As we showed in Table 2, protein content of Hamoor in the oven method (%85.66±0.26) was higher than in others. The highest fat content ($\%5.56\pm0.04$) in the solar sun way found in Hamoor and the lowest $(\%3.22\pm0.12)$ also observed in solar method for fish Govazym that can to be dependent on lipid oxidation during the solar drying. The maximum amount of ash (%12.44±.0.27) found for Zeminkan using the solar method and the lowest (%5.53±0.41) in oven method is related to fish Hamoor. The moisture

2311

Table 2. Proximate composition of dried three fish species by two solar and oven methods

Samples 1	Method	Moisture(%)	Ash(%) F	at (%) Prote	in(%) Carbohy	drate(%)	Energy value	
							(kcal)	
Zeminkan	Oven	14.12±0.01 ^a	11.79±0.11	^a 4.03±0.13 ^a	72.49±0.39 ^a	1.89 ^a	333.79 ^a	
Zeminkan	Solar	7.96±0.19 ^b	12.44±0.27	^b 3.77±0.11	^b 77.61±0.26 ^b	2.42 ^b	354.05 ^b	
Govazym	Oven	14.35±0.13 ^a	5.53±0.41°	3.46±0.02 ^b	77.44±0.26 ^b	2.87 ^b	352.68 ^b	
stranded tail								
Govazym	Solar	4.84±0.34 ^c	6.32±0.11 ^d	3.22±0.12 ^b	82.44±0.14 ^c	0.78 ^c	361.86°	
stranded tail								
Hamoor	Oven	8.24±0.02 ^d	6.03±0.01 ^e	4.1±0.14 ^a	$85.66{\pm}0.26^{d}$	3.93 ^d	395.26 ^d	
Hamoor	Solar	7.98±0.19 ^b	6.43±0.13 ^e	5.56±0.04°	83.82±0.17 ^c	4.05 ^d	401.52 ^d	

Data are expressed as mean ± standard deviation

Same letters in each column indicates the lack of significant differences. (P< 0.05)

content in oven method for fish Govazym was the highest (%14.35+0.13), but the lowest amount (%7.96+ 0.19) found for Zeminkan. The highest value of carbohydrate found for fish Hamoor. Major function of carbohydrate is production of energy for body cells. For accumulation and shrinkage some of the food molecules and many of the physiological functions, it needs to carbohydrates. Energetic value in Hamoor was higher than others. The results of dried fishes nutrients in oven in this research with obtained results by Ogbonnaya and Ibrahim (2009) were compared, showed that percentage of protein and ash contents in dried fillets in oven in this research were more and percentage of fat and moisture contents in dried fillets in oven in this research were less, and except percentage of carbohydrate of dried Hamoor fillet that was same, percentages of carbohydrate of another two fish species in this research were less, but energetic value of obtained (550.6 kcal/100g) by Ogbonnaya and Ibrahim was very higher than energetic values of dried fillets in this research, that its reasons related to the type and environmental conditions of fish species.

Conclusions

Results of this research showed that both drying methods of sun and oven effect on fish fat, ash, protein and carbohydrate contents, and also related to used drying method for fish storage. A sun drying method were created relative stability in the food compounds, but the effects of drying method in oven was in drying time so it can decrease drying time. *Hamoor* fish found highest protein and fat contents and best nutritive value in both methods. This experiment also showed the importance of fish drying in the lack of losing valuable nutrients. Also, these results indicate that fish nutrients composition resistant against high temperature so it will not be destroyed. This research also indicates the use of the electric oven method for fish drying in Iran.

Acknowledgement

Authors sincerely thank to Behbahan Katam Alanbia University of Technology, Behbahan, Iran for provide facilities in the laboratory. This research project done in Behbahan Katam Alanbia University of Technology.

References

- Adeparusi, E., Ajibefun, A. and Akeremale, E. 2003. Smoke-curing of fish by artisanal fisher folks in Ilaje, Ondo State, Nigeria. Asset Series A3(4): 101-109.
- Akinneye, J.O., Amoo, I.A. and Arannilewa, S.T. 2007. Effect of drying methods on nutritional composition of three species of fish. Journal of Fishery International 2(1): 99.-103.
- Andrew, A. 2001. Fish Processing Technology, p. 7. University of Ilorin Press, Nigeria.
- AOAC, 2005. Official Methods of Analysis (18th ed). Association of Official Analytical Chemists International, Maryland, USA.
- Azam, K. and Ali, M.Y. 2004. Biochemical assessment of selected fresh fish. Journal of Biology Science 4: 9-10.
- Bala, B.K. and Mondol, M.R.A. 2001. Experimental investigation on solar drying of fish using solar tunnel dryer. Drying Technology 19: 427-436
- Basha, S.M. and Pancholy, S.K. 1982. Composition and characteristics of basic proteins from peanut (ArachishypogaeaL.). Journal of Agricultural and

Food Chemistry 30: 1176–1179.

- Clucas, I.J. and Sutcliffe, P.J. 1981. An introduction to fish handling and processing. p.86-91.Tropical Products Institute. London.
- Dahl, L., Bjorkkjaer, T., Graff, I.E., Malde, M.K. and Klementsen, B. 2006. Fish- more than just omega-3. Tidsskr. Nor. Laegeforen 126: 309-311.
- Edijala, J. K., Egbogbo O. and Anigboro, A. A. 2009. Proximate composition and cholesterol concentrations of *Rhynchophorus phoenicis* and *Oryctesmonoceroslarvae* subjected to different heat treatments. African Journal of Biotechnology 8(10): 2346-2348.
- Eyo, A.A. 1998. Shelf-life of Moonfish (*Citharinus citharus*) and Tumk Fish (*Mormyrus rume*) during storage at ambient temperature and on Ice. p: 35-37. FAO Fisheries Report No. 574.
- Eyo, A.A., 2001. Fish processing technology in the tropics.p. 10-170. National Institute for Freshwater Fisheries Research (NIFFR), New Bussa, Nigeria.
- Gokoglu, N., Yerlikaya P. and Cengiz, E. 2004. Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chemistry 84: 19-22.
- Fennema, R.O. 1996. Food chemistry, 3rd edn. p.365-369. Marcel Dekker, Inc. 270 Food Chemistry, (3rd edition).
- Norimah, A.K. Safiah, M. Jamal, K. Siti Haslinda, Zuhaida, H. Rohida, S. Fatimah, S. Siti Norazlin Poh, B.K. Kandiah, M. Zalilah, M.S. Wan Manan, W.M. Fatimah, S. and Azmi, M.Y. 2008. Food consumption patterns: Findings from the Malaysian adult nutrition survey (MANS). Malaysian Journal of Nutrition 14(1): 25-39.
- Ogbonnaya Chukwu and Ibrahim Mohammed Shaba, 2009. Effects of drying methods on proximate compositions of Catfish (*Clarias gariepinus*). World Journal of Agricultural Science 5(1): 114-116.
- Tao, W. and Linchun, M. 2008. Influences of hot air drying and microwave drying on nutritional and odorous properties of Grass Carp (*Ctenopharyngodon idellus*) fillets. Food Chemistry 110 (3): 647-653.